

Configuration Management Plan

for the

Comprehensive Large Array-data
Stewardship System

(Version 1)

October 1, 2002

CLASS CM Plan

Revisions

Version Description of Version Date Completed

Draft 0.1 Initial draft 7/05/02

Draft 1.0 Updated with QMO Review Comments – ready for CPMT review 7/16/02

1.0 Incorporated comments from CPMT – approved by CPMT 10/01/02

1.0 Cleanup non-printing characters 10/07/02

10/7/2002 5:10 PM i

CLASS CM Plan

Review & Approval

Project Plan Review History

Reviewer Version
Reviewed

Signature Date

Constantino Cremidis/CSC

Alexander Kidd/OSDPD

Geof Goodrum/NCDC

Carlos Martinez/TMC

Ted Habermann/NGDC

Eric Kihn/NGDC

David Vercelli/NESDIS

Robert Mairs/NESDIS

Anita Konzak/CSC/ QMO

10/7/2002 5:10 PM ii

CLASS CM Plan

Table of Contents

1 INTRODUCTION... 1
1.1 Purpose... 1
1.2 Scope... 1
1.3 Applicable Documents .. 1
1.4 Acronyms... 1
1.5 Definitions.. 2

2 ORGANIZATION .. 3
2.1 Distributed Development Team... 3
2.2 Roles and Responsibilities .. 4

2.2.1 Responsibilities of the CCB.. 4
2.2.2 Responsibilities of the CCB Chair.. 5
2.2.3 Responsibilities of the Configuration Management Officer (CMO) 5
2.2.4 Responsibilities of the CLASS Lead Integrator.. 5

3 CONFIGURATION DEFINITION .. 5

4 CONFIGURATION CONTROL .. 6
4.1 Identification of Proposed Changes .. 6
4.2 Documentation of Proposed Changes ... 7
4.3 Evaluation of Proposed Changes... 7

4.3.1 Processing Emergency Changes ... 7
4.3.2 Processing Urgent and Routine Changes.. 8

4.4 Integration of Approved Changes ... 8

5 CONFIGURATION STATUS ACCOUNTING .. 8
5.1 Status Account Data ... 8
5.2 CLASS Configuration Management Database .. 11

6 CONFIGURATION AUDITS.. 11
6.1 CM Process Audits.. 11
6.2 Functional Audits.. 11
6.3 Physical Audits .. 11

APPENDIX A: DETAILED SOFTWARE BUILD AND PROMOTION PROCESS......... 12

10/7/2002 5:10 PM iii

CLASS CM Plan

Comprehensive Large Array-data Stewardship System
Configuration Management Plan

1 Introduction

1.1 Purpose
The purpose of this Configuration Management (CM) Plan is to identify and define the
organization, activities, overall tasks, and objectives of Configuration Management for the
Comprehensive Large Array-data Stewardship System (CLASS). This initial version addresses
the following major CM activities: change request management, software build and promotion
processes, and CM audits. Additional CM-related processes and procedures may be defined as
the CLASS project matures. As they are defined and approved, they will be documented in this
or related documents as CLASS project standards.

1.2 Scope
This plan is applicable to all systems managed by the CLASS Project Management Team
(CPMT), as well as the associated hardware and software used to support those systems.

1.3 Applicable Documents
CLASS System Requirements (September 24, 2002)
CLASS Allocated Requirements (TBW)
CLASS System Architecture (TBW)
CLASS Software Development Guide (draft, July 22, 2002)
CLASS Quality Management Plan (draft, August 30, 2002)

1.4 Acronyms
CCR Configuration Change Request
CCB Configuration Control Board
CI Configuration Item
CIO Chief Information Office
CLASS Comprehensive Large Array-data Stewardship System
CM Configuration Management
CMDB Configuration Management Database
CMO Configuration Management Office
CPMT CLASS Project Management Team
CVS Concurrent Versions System
IPD Information Processing Division
NCDC National Climatic Data Center
NESDIS National Environmental Satellite, Data, and Information Service
NGDC National Geophysical Data Center

10/7/2002 5:10 PM 1

CLASS CM Plan

NOAA National Oceanic and Atmospheric Administration
OSDPD Office of Satellite Data Processing Division
PAL Project Area Lead
PR Problem Report
SAA Satellite Active Archive
SET System Engineering Team (CLASS)
TAL Technical Area Lead
TBD To Be Determined
TBW To Be Written

1.5 Definitions
Baseline A formal, approved document or product that serves

as a departure point for future releases. The CLASS
baseline includes a documentation baseline and the
system baseline (software, hardware, etc.)

CLASS Configuration Control Board The board that defines the disposition of

Configuration Change Requests. The board is
composed of CPMT members and their designees,
and SET members.

CLASS Project Management Team The managing authority for the CLASS project.

This team is defined in Section 2.

CLASS Systems Engineering Team The technical advisory committee for CLASS. This

team is defined in Section 2.

Configuration Change Request A request for change to a baseline document or

system.

Configuration Item An aggregation of hardware, software, or both that

is designated for configuration management and
treated as a single entity in the configuration
management process.

Level-I CCR A request for a change that requires changes to the

CLASS System Requirements document or the
CLASS System Architecture document.

Level-II CCR A request for change that does not require updates

to the CLASS Requirements document or the
CLASS System Architecture, but does require a
change to the allocated requirements or interfaces.

10/7/2002 5:10 PM 2

CLASS CM Plan

Level-III CCR A request for change that does not require updates

to the CLASS Requirements document, the CLASS
System Architecture, the allocated requirements, or
interfaces.

Originator The person who submits a Configuration Change

Request.

Problem Report A request for a change submitted to the Remedy

Configuration Management tool, documenting a
problem identified during system integration and
test.

2 Organization

2.1 Distributed Development Team
The CLASS project is being conducted in support of the mission of the National Environmental
Satellite, Data, and Information Service (NESDIS) to acquire, archive, and disseminate
environmental data. A distributed team that includes NOAA personnel at OSDPD, NCDC, and
NGDC; and contractors in Suitland, MD, and Fairmont, WV, is developing the system. The
development of CLASS is expected to be a long-term, evolutionary process, as current and new
campaigns are incorporated into the CLASS architecture. Development systems are located at
OSDPD in Maryland, NCDC in North Carolina, NGDC in Colorado, and the NCDC contractor
site in Fairmont, WV, with the integration system located at the OSDPD facility in Maryland.
The system will operate at both the OSDPD facility in Suitland, MD, and the NCDC facility in
Asheville, NC.

Due to the distributed and evolutionary characteristics of the project, the Contractor Technical
Area Lead (TAL) and the Government Program Area Lead (PAL) from each participating
organization serve on the CLASS Project Management Team (CPMT), led by the NESDIS Chief
Information Officer (CIO). The CPMT is responsible for overall direction and coordination for
CLASS. Similarly, each development team is represented on the CLASS Systems Engineering
Team (SET), which is led by the CLASS Lead Integrator. The SET oversees the technical
direction of the development to ensure consistency and compatibility among the various
components.

In such a distributed development environment, it is particularly important that changes to the
baseline system be strictly controlled. The Configuration Management Office (CMO) manages
all proposed changes to the CLASS baseline (requirements, software, hardware, etc.), with the
review and approval of the CLASS Configuration Control Board (CCB). The CLASS CCB

10/7/2002 5:10 PM 3

CLASS CM Plan

includes the members of the CPMT and the SET, the CMO, and additional members as
designated by a TAL or PAL. This board reviews for approval all CLASS configuration change
requests (CCRs). The Chair of the CCB is the OSDPD PAL, who has decision-making authority
on the disposition of CCRs, with input from the other CCB members.

CPMT

De

(B

De

(Fa)

D

(S

CCB
TLead

Integrator

In
T

(Su

NESDIS CIO

Figure 1 - CLASS Organiz

When a CCR is received, the CLASS Lead Integrator (wit
evaluates it, assigns it to the appropriate Level (I, II, or III
assessment for implementation. The CCB may adjust the
has been incorrectly assigned. The CCB can approve or re
authority, or assign it for further analysis. The CMO track
acted on in a timely fashion.

2.2 Roles and Responsibilities
The major roles in configuration management activities ar

2.2.1 Responsibilities of the CCB

< Review all CCRs and provide the necessary input t

reject, or escalate). If additional information is nee
group(s) for further analysis.

< Assign approved CCRs to an implementation date,
< Ensure that action is taken on change requests in a

10/7/2002 5:10 PM
NGDC
velopment
Teams

oulder, CO)
NCDC
velopment
Team

irmont, WV
OSDPD
evelopment

Team
uitland, MD)
ation

h input from the SET as
) and priority, and provid
level or priority if they b
ject a CCR, escalate it to
s all CCRs to ensure tha

e defined below.

o determine the disposit
ded, assign the CCR to

 and function or subsyste
timely fashion.
System
tegration &
est Team
itland, MD)
n
e
el

t

io
th

m

SE
eed
s an
iev
a hi
they

n (a
e ap

.
CMO
ed)
 impact

e that it
gher
 are

pprove,
propriate

4

CLASS CM Plan

2.2.2 Responsibilities of the CCB Chair

< Direct the CCB meetings.
< Assign/approve disposition of each CCR and implementation assignment for approved

CCRs.
< Manage escalation process when a CCR is referred for higher level approval or input.
< Ensure that action is taken on change requests in a timely fashion.

2.2.3 Responsibilities of the Configuration Management Officer (CMO)

< Maintain the CLASS CM Plan.
< Identify Configuration Items (CI) and document their characteristics.
< Control and facilitate changes to the characteristics of a CI.
< Perform audits to verify compliance with CLASS CM Plan
< Manage the configuration management database.
< Report to the CCB approval status of all proposed changes and implementation status of

all approved changes.
< Work with the CCB Chair and members to schedule regular CCB meetings, and prepare

the agenda for each meeting.
< Perform system builds and promotions.

2.2.4 Responsibilities of the CLASS Lead Integrator
< Monitor development for technical integrity and consistency, and compliance with the

system requirements and architecture.
< Review change requests as they are received; classify them as Level I, II, or III; review

the assigned priority; and determine level of effort for implementation.
< Work with the CMO to ensure that action is taken on change requests in a timely fashion.
< Support the CCB in review and disposition of CCRs.
< Lead system integration and test for each release.
< Review Problem Reports to resolve questions and priority.

3 Configuration Definition

Configuration-managed items are those items directly involved with the system and therefore
part of the baseline. All aspects of configuration management apply to these items. These
comprise:

• The deliverable system at all levels, from configuration items down to configuration
units.

• Related documents—Documents that define configuration items and components, such as
negotiated agreements, specifications, charts, drawings, code, and change orders.

• Development hardware and software.

10/7/2002 5:10 PM 5

CLASS CM Plan

The CMO defines the CIs that constitute the deliverable system. At the top level, CLASS is
treated as a CI – changes are managed, tracked, and reported at the CLASS level. To provide
greater visibility to the stability of the system and its components, the CMO defines lower level
CIs such as subsystems, functional areas, hardware components, and, at the lowest level,
individual code units. This allows version control and reporting at various levels within CLASS.
The Configuration Management Database (CMDB), described in Section 5.2, maintains the key
characteristics of each CI, as defined by the CMO (e.g., software unit version numbers, hardware
model numbers, system release numbers).

CIs for the Satellite Active Archive (SAA) are currently defined in the CMDB, and these form
the basis for the CLASS configuration. The CMO will review and update the CI definitions
when the CLASS system architecture is completed and approved, and as additional CLASS
components are designed.

The baseline configuration for CLASS and its subsystems is defined by the CLASS System
Requirements, the CLASS System Architecture, the CLASS Allocated Requirements, and the
Configuration Management Database. They contain performance criteria and design
specifications for CLASS and its subsystems. This documentation baseline is the basis for future
enhancements and will mature as CLASS continues to improve its systems. Once approved by
the CPMT, these documents, along with the system they describe, constitute the approved
CLASS baseline, and are subject to the processes defined in this CM Plan.

Some documentation on a project is working documentation that is not part of the deliverable
system, and is therefore not included in baselines. This documentation, however, also needs to
be managed and controlled to ensure that changes are made in an organized manner and that the
current version is always known and available. Examples of such items are project plans (such as
the configuration management plan, quality plan) and internal project procedures (such as
inspection procedures). This documentation is not governed by the procedures defined in this
CM Plan, however, changes to this documentation must be approved by the CPMT.

4 Configuration Control

Configuration Control is the systematic proposal, justification, evaluation, coordination, approval
or disapproval of proposed changes. Configuration control also includes the implementation of
all approved changes to the baseline. The Configuration Control process includes: Identification
of proposed changes, documentation of proposed changes, evaluation and disposition of
proposed changes, and integration of approved changes.

4.1 Identification of Proposed Changes
Changes are permanent alterations to the established baseline (system or documentation). Each
change is designated as either a Level I, Level II, or Level III change. Changes requiring changes
in the CLASS System Requirements document or in the CLASS System Architecture document

10/7/2002 5:10 PM 6

CLASS CM Plan

are classified as Level I changes. Changes that do not fall into the Level I category, but require
changes to the CLASS Allocated Requirements or CLASS interfaces are classified as Level II.
All other changes are classified as Level III changes.

A change is proposed when a new requirement is received, an improvement is desired, or a
problem requires solution. Changes may be requested by Government or contractor personnel.

Problems identified during system integration and test, and resolved prior to delivery of the
system to operations, are handled by the development and test teams as Problem Reports, under
the direction of the Lead Integrator (with CPMT oversight if necessary). Problems identified
during system integration and test that are not resolved prior to delivery become requests for
changes to an established system baseline (i.e., the production system), and are converted to
CCRs when the release is delivered. These CCRs must be approved by the CPMT when the
release is approved for promotion to operations. These CCRs are scheduled for future releases
and tracked in the same way as other CCRs.

4.2 Documentation of Proposed Changes
The Remedy Configuration Management tool is used to submit proposed changes. The
instructions for submitting proposed changes are available via the online help pages provided
with the tool.

4.3 Evaluation of Proposed Changes
Each CCR submitted via the Remedy tool is directed to the CLASS Lead Integrator. The Lead
Integrator reviews the CCR, classifies it as a Level I, Level II, or Level III change, reviews or
assigns a priority, and provides an impact assessment (a rough estimate of the level of effort
required for implementation, and impact to other current and planned activities). The Lead
Integrator then works with the CMO to schedule the CCR for CCB review.

One of three change priorities is assigned to every change request: Emergency, Urgent or
Routine. All changes regardless of their priority follow the same approval process. The main
difference is the time allowed for review. The priority of a CCR is assigned either by the
originator or by the Lead Integrator. The Lead Integrator has the authority to alter the priority of
any CCR.

Upon receipt of a new change request, the CCB evaluates the change, contacts the originator of
the change if needed, approves or denies the request for a change, and schedules the change for
implementation.

4.3.1 Processing Emergency Changes
A CCR is assigned an Emergency priority when the originator or the Lead Integrator determines
that a delay in the implementation would impact operations or create software failures.
Emergency CCRs are assigned to the Integration Facility TAL who will try to obtain approval

10/7/2002 5:10 PM 7

CLASS CM Plan

out of board from the CCB within two hours. If no resolution is achieved, the Integration Facility
TAL will approve or deny the request.

4.3.2 Processing Urgent and Routine Changes
Urgent and Routine changes follow the same flow process, however urgent changes will
generally be assigned to the next scheduled software release or may cause a software release to
be scheduled. It is the responsibility of the Lead Integrator to obtain timely approval of urgent
CCRs to be included in the next scheduled software release.

4.4 Integration of Approved Changes
The requirements manager makes changes to the baseline documentation for Level I and Level II
CCRs immediately after CCB approval. Once the changes are made and the necessary
traceability established in DOORS, the Lead Integrator verifies that the change was correctly
documented and the CMO closes the CCR. Implementation is then tracked along with all other
requirements.

The CCB assigns each approved Level III CCR to an implementation date and a functional group
or subsystem when the CCR is approved. The assignment is reviewed by the CPMT during
release planning to verify that the scope of the release is acceptable and consistent with current
priorities. The Lead Integrator is responsible for ensuring that all scheduled changes are
implemented, and for verifying the correct implementation of the changes. All verified CCRs
are assigned to the CLASS CMO, who is responsible for collecting all change requests assigned
to a software release and incorporating them into the operational system. Appendix A provides
complete details of the process for this task. After the CMO has promoted the changes to the
operational environment and verified that the changes are functioning correctly in that
environment, the CMO closes the CCR.

Figure 2 shows the high-level process flow for managing change requests.

5 Configuration Status Accounting
Configuration Status Accounting includes the collecting, processing, maintaining and publishing
data necessary to effectively manage the configuration.

5.1 Status Account Data
The CMO collects data necessary to produce reports useful to the CPMT, CCB, and Lead
Integrator. Typical data includes:

• Identifying information pertaining to each Change Request received and its status in the
Remedy Configuration Management tool.

• Identifying information pertaining to each controlled configuration item, i.e. current

revision, revision history, associated subsystem, etc.

10/7/2002 5:10 PM 8

CLASS CM Plan

The CMO distributes bi-weekly reports with the status of each CCR in the system. The reports
include summary sections detailing: new change requests, newly approved change requests,
recently closed change requests and a list of change requests to be included in the next software
release.

10/7/2002 5:10 PM 9

CLASS CM Plan

Originator
Submit CCR

Lead Integrator
Classify LI, LII, LIII

Assign Priority
Assess Impact

CMO
Schedule for CCB

Emergency?

Integration
TAL

Contact CCB

CCB
Determine
Disposition

Requirements
Manager

Update Document
Baseline

CMO
Close CCR

Lead Integrator
Verify Baseline

Change

Promote change
to Operations

CMO

Promote change
to Test

CMO

Lead Integrator
Verify Baseline

Change

Development
Team

Implement
Change

CCR Disapproved

Yes No

Yes

No

LIII LI or LII

Approved?

Level?

Request More Info

Send Information
Request

CMO

Provide Requested
Information

Figure 2 - CCR Process Flow

10/7/2002 5:10 PM 10

CLASS CM Plan

5.2 CLASS Configuration Management Database
The CLASS configuration management database contains detailed information about every
CLASS configuration item; it is used for status reporting as well as for moving new CLASS
software releases to operations. The CMO is responsible for maintaining, supporting and
updating the CLASS configuration management database.

6 Configuration Audits
Configuration audits consist of reviews where the CM process or a product configuration is
compared to requirements to determine if those requirements are being met.

6.1 CM Process Audits
Process audits confirm that the CM process is being followed. These audits focus on the
processes being used rather than on the products being produced. They examine the manner in
which the CM activities are performed against the documented procedures. The quality
assurance office conducts these audits on a regular basis during the course of the project to allow
for problem identification and corrective action. The CLASS Quality Assurance Plan provides
further information regarding the CM process audit.

6.2 Functional Audits
Functional audits confirm that a product performs as required. They typically involve an
examination of the test results against Test Plans and Materials to verify that the tests were
executed as planned, and an examination of test results against the product’s requirements to
verify that the demonstrated functionality is consistent with the required functionality. The CMO
conducts this audit before a release is approved for promotion to operations.

6.3 Physical Audits
Physical audits confirm that the product is consistent with its documentation. It examines the as-
built version of a product (or CI) against the technical documentation that defines it to verify that
the product and its documentation are consistent, all authorized changes have been made, and no
unauthorized changes have been made. The CLASS CMO, along with the Lead Integrator,
conducts this audit before a release is approved for promotion to operations.

10/7/2002 5:10 PM 11

CLASS CM Plan

Appendix A: Detailed Software Build and Promotion Process

1.1 Overview
In CLASS, configuration management is closely bound to the concept of a Configuration Change
Request (CCR). No code is moved or modified without a CCR being opened to document and
control its changes and movement.

The Remedy Change Management Tool, is used to create, update, and track the status of CLASS
CCRs. The Concurrent Versions System (CVS) is used in the CLASS system to control access to
source files and maintain configuration management information for each file. A set of in-house
Perl scripts is used to promote software changes from one environment to another.

1.2 CLASS Environments
CVS is used to maintain the configuration management information for each file. This section
gives a brief description of how CVS is set up and used for CLASS, and the environments used
to transition changes from development to operations.

Software Repository
The CVS repository stores a complete copy of all the files and directories that are under
version control. To access the files, the developer or CMO uses CVS commands to
create a copy of the files into a working directory and then works on that copy. When the
developer completes a set of changes, the developer commits them back into the
repository. The repository then contains the changes made, as well as recording exactly
what was changed, when it was changed, and other such information. Note that the
repository is not a subdirectory of the working directory, or vice versa; they are in
separate locations.

Development (Dev)

 A separate development platform is in place at each development location. Programmers
perform all software development in this environment. They can check out source files
from CVS, modify source files, and commit changes. Programmers can create and test
runtime files in the Development environment. Each night, a system build is run from
the development source library to create the latest version of the development system on
each development platform.

 Integration (Int)

When a release, or a component of a release, is approved for turnover to the Integration
and Test team, the CLASS CMO is responsible for marking the files for promotion to
Integration. The CMO checks out delivered versions of source code to the Int
environment, and runs make to create runtime files in this environment.

 Beta Test (Beta)

10/7/2002 5:10 PM 12

CLASS CM Plan

This environment includes runtime files (no source code) under directories corresponding
to each operational processor. Each of these directories contains copies of all the runtime
files that are hosted on one operational processor. The directory on the test machine
serves as a staging and testing area for runtime files to be promoted to the corresponding
operational machine.

 The CLASS CMO is responsible for promoting runtime files from the Int environment to

the appropriate Beta directory. To set up an environment that replicates the environment
on a particular operational processor, the test manager logs in, sets his environment
variable HOME to the Beta directory, and executes the .profile script in that directory.

 Operations (Oper)

This environment includes CLASS runtime files distributed among the operational
processors. The CLASS CMO is responsible for promoting runtime files from the Beta
Test environment on the test machines to the corresponding directory on the operations
processor.

A problem may be discovered in any environment, but software changes always start in the
Development environment and are promoted through the other environments. Some files, such as
those that define environment variables or configuration parameters, may have to be customized
in each environment. This is done with special CM scripts.

1.3 Promotion Process
The promotion process is the sequence of steps followed from the creation of a Configuration
Change Request (CCR) until the final disposition of this proposed change. All software changes
follow the same process with the exception of emergency CCRs. Beta testing for emergency
CCRs is streamlined, and the emergency CCR then goes directly from Beta Test to Operation;
there is no wait for a scheduled release.

Figure 3 shows the process flow for the approved change request as well as the software
promotion flow, as described in the following paragraphs. See Figure 2 and the discussion in
Section 4 for the CCR review and approval process.

10/7/2002 5:10 PM 13

CLASS CM Plan

C M O
Close CCR

Prom ote change
to Operations

C M O

Prom ote change
to Beta Test

C M O

Lead Integrator
Conduct Beta Test

D evelopm ent
Team Lead

Review and
Approve Change

Approved Level III CCR (see Section 4)

D evelopm ent
Team Lead

Assign Change to
Developer

Im plem ent and
Test Change

D eveloper

Prom ote change
to Integration

C M O

Approve Prom otion
to D eploym ent

C PM T

Prom ote change
to D eploym ent

C M O

Approve Prom otion
to O perations

C PM T

C

D

Builds System in
Integration

C M O
E

F

G

H

Dev Environm ent

Oper Environm ent

Dep Environm ent

Beta Environm ent

Int Environm ent

Source

Code

Library

A-B

Figure 3 - Promotion Process

10/7/2002 5:10 PM 14

CLASS CM Plan

A- Originator Creates Configuration Change Request

A configuration change request (CCR) can be opened for any reason, for example: to
report a problem or to assign a new or maintenance development task. In order to submit
a CCR, the originator needs access to the Remedy Change Management tool.

When filling in a CCR, the following guidelines apply.

User id must be entered in the ID+ field. Once a valid user id is entered, the user
must press enter and see his/her name populate the Name+ field. If the name field
is not populated, please contact the CMO.

Enter a short description in the Short field.

Enter a detailed and complete description of the problem in the Details field.

Select CLASS-CCR for the Category Field.

Select the appropriate values for Type and Item

Select the appropriate priority.

The Lead Integrator is notified via email each time that a CCR is created. He or she
reviews the CCR, verifies the priority and modifies it if necessary, and checks for
duplication with existing CCRs. The Lead Integrator then classifies the Change Request
as Level I, II, or III, and enters a rough estimate of the level of effort required for
implementation. The Lead Integrator then assigns the CCR to the CMO for CCB action.

B- CCB Reviews Changes

The CMO prepares the list of CCRs for review at the CCB meeting, and distributes the
list to the CCB members. The CCB members review each CCR and determine the
disposition: accept, reject, escalate to higher level for consideration, or reassign for
further analysis.

If the change is approved, the CCB assigns the CCR to a release and a development team
for planning and implementation and continues with step C of the CCR process. The
CMO changes the supervisor on the CCR to the development lead for the assigned
development team.

If the Change is rejected, the CMO changes the status to Closed.

Emergency Changes have to be resolved within two hours of receipt. If no consensus is

10/7/2002 5:10 PM 15

CLASS CM Plan

reached, the Integration Facility TAL will approve or reject the change.

C- Developer Implements Change

The development lead for the assigned development team assigns the CCR to a specific
developer. The developer who is assigned as a supervisor for a CCR is responsible for
the CCR from the time it is assigned to him or her until it is promoted to the Integration
environment. Generally, the developer assigned to supervise a particular CCR is someone
who is familiar with the affected area of the system. The developer may notice that a
CCR is a duplicate of an existing request, in which case the developer will relate the two
changes.

The developer completes the design, code, and development testing according to the
procedures defined in the CLASS Software Development Guide. After the design has
been reviewed and approved, the developer checks out the modules that need to be
changed and implements the changes. After the code has been reviewed and approved,
the developer can commit the changes to the development repository. The developer then
completes functional testing of the change in the development environment.

Each file that is modified must be noted in the CCR along with the version of that file.
This is done automatically by CVS when the file is committed. The list of runtime files
that will be moved into the operational environment must be added to the CCR. This
information goes in the Runtime Files field of the form.

 In the Instructions field of the form the developer should include:

1. Build instructions
2. Customizations required
3. Any other instruction that the developer considers necessary.

The Developer documents all changes done in the Implementation field of the Form.
The Developer writes a test plan and updates the Test field with it. Expected test results
should also be provided.

The Developer also updates any necessary system documentation, e.g., design
documentation, test plans.

A final peer review is conducted at the completion of development testing and
documentation to verify that the change is complete and documented. At the completion
of this review, the developer makes the following changes to the CCR:

The State is set to Pending and the Pending reason to Supervisor Action
The Supervisor is set to Development Lead.
The Work Log is updated

10/7/2002 5:10 PM 16

CLASS CM Plan

D- Development Lead Reviews CCR

The Development Lead reviews the CCR, ensures that all peer reviews have been
completed and that accompanying documentation is provided, and reassigns the CCR to
the CMO for promotion to Integration.

E- CMO (Int) Promotes CCR

The CMO receives email stating that the CCR is ready to be promoted to Integration. The
CMO:

Checks the CCR to ensure that all information is clear and correct.

Makes the necessary changes to the system Makefile. All subsystems are already
included in the system Makefile, but the CMO may make changes if necessary.

If there are changes with the Environment variables, the CMO runs a script to
load the new environment variables, and populates the CM database with the new
values for all development and operational environments/hosts. The CMO updates
the values in the database as needed and finally runs the script to unload all
environment files.

Checks that all the files are under CVS control and unlocked, that the latest
version is listed in the CCR, and that the version in the dev directory is the same
as the one in the CVS directory. Fixes any problem found.

Runs a script to do the CVS promotion from Dev to Int.

Updates the Department field in the CCR form to Integration.

Executes the system Makefile to build the runtime files in the Int environment.

Runs a script to update the CM Inventory database.

All promotions and configuration changes performed by the scripts listed above are
recorded automatically in the CM log.

F- CMO (Beta) Promotes CCR

The CMO, after verifying that the system has correctly built in the Integration
environment, promotes the CCR (or group of CCRs) to the Beta Test environment

10/7/2002 5:10 PM 17

CLASS CM Plan

The promotion to the Beta Test environment does not involve compiling. It involves
copying the runtime files to the appropriate directories.

All promotions and configuration changes performed are recorded in the CM log. The
CMO changes the CCR Supervisor to the Lead Integrator.

The test team performs functional and stress testing to verify general application
functionality, and regression testing to validate that the change did not adversely affect
other parts of the system. Generally, tests in the Beta Test environment are performed
with 'real' data.

The Lead Integrator reports results to the CPMT; the CPMT authorizes the promotion to
the operational environment based on the test results. Once the change is approved for
operations, the Lead Integrator changes the CCR Supervisor to the CMO.

G- CMO promotes changes to Deployment Environment
The CMO promotes the release to the deployment test environment at the NCDC
operational site. This exercises the deployment process, and provides the operations
personnel at the second site with the opportunity to become familiar with the new release
before it becomes operational.

H- CMO puts CCR into Operation

The CMO promotes the changes into the operational environment as follows:

The CMO FTPs all the runtime files to the operational machines.

On each operational machine affected, the CMO stops the affected subsystems
and servers, backs up the current runtime files, and copies the new runtime files to
the runtime directories.

If there are environment file updates, the CMO updates the environment files.

Starts all the subsystems and servers.

Changes the category of the CCRs to Oper.

Monitors closely for a week to ensure that all changes are working properly.

Once the CMO is satisfied with the changes, the CMO closes the CCR.

All promotions and configuration changes performed above are recorded in the CM log.

10/7/2002 5:10 PM 18

CLASS CM Plan

1.4 The Remedy Change Management Tool

The Remedy Change Management Tool is the tool used by CLASS to track all change
requests. To access the Change Management Tool the user needs Remedy’s user tool
installed in his PC.

 Quick guide for Remedy CM tool

This guide assumes that you are have some practice with the Remedy user tool. If you are
not familiar with the tool, a little practice and some help from someone familiar with the
tool should be enough. Detailed information is available in the help menu of the User
tool.

 Creating a Change Request
 1.Login into the Remedy User Tool.
 2.Open Form Remedy Application Navigator, in search mode.
 3.Select Change Management Application.
 4.Click Create. A new form will open.
 5.Enter your user id and press enter. The Name field should populate with your

name.
 6.If Name field does not populate contact the CMO.
 7.Enter Short Description of the Problem.
 8.Enter detailed description of the Problem.
 9.Select CLASS-CCR as category.
 10.Select Type and Item.
 11.Click on Save Button (Upper right corner of the window)

 Working with a Change Request
 1.Login into Remedy User Tool.
 2.Open Form Remedy Application Navigator, in search mode.
 3.Select Change Management Application.
 4.Click Query. A new form will open.
 5.Enter search data and click on Search button (Upper right corner of the

window).
 6.Select CCR to modify from results list.
 7.Modify CCR.
 8.Click on Save button (Upper right corner of the window).

 I have done all the software changes, what do I do next?
 1.Check-in all source code using the ci command.
 2.Open CCR for Change following the instructions above.

10/7/2002 5:10 PM 19

CLASS CM Plan

 3.In the Implementation field enter a full detail of all changes made.
 4.In the Test field enter the Test plan and expected results.
 5.In the Instructions field enter build instructions and other special instructions

that the CMO or Test Manager should be aware of.
 6.Verify that all Source code changes and revision numbers are in the Source

Code field.
 7.Enter all runtime files in the Runtime Files field.
 8.Change Group to SAA-SW-Manager
 9.Change Supervisor to Developer Manager
 10.Change Status to Pending
 11.Change Pending reason to Supervisor Action
 12.Update Work Log.
 13.Save Your Changes.

10/7/2002 5:10 PM 20

	Introduction
	Purpose
	Scope
	Applicable Documents
	Acronyms
	Definitions

	Organization
	Distributed Development Team
	Roles and Responsibilities
	Responsibilities of the CCB
	Responsibilities of the CCB Chair
	Responsibilities of the Configuration Management Officer (CMO)
	Responsibilities of the CLASS Lead Integrator

	Configuration Definition
	Configuration Control
	Identification of Proposed Changes
	Documentation of Proposed Changes
	Evaluation of Proposed Changes
	Processing Emergency Changes
	Processing Urgent and Routine Changes

	Integration of Approved Changes

	Configuration Status Accounting
	Status Account Data
	CLASS Configuration Management Database

	Configuration Audits
	CM Process Audits
	Functional Audits
	Physical Audits

	Appendix A: Detailed Software Build and Promotion Process

